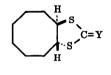

THE DIRECT SYNTHESIS OF OPTICALLY ACTIVE <u>trans</u>-CYCLOOCTENE. OPTICALLY ACTIVE trans-BICYCLO[6.1, 0]NONANE

E. J. Corey and Joel I. Shulman

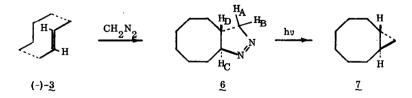
Converse Laboratory, Harvard University, Cambridge, Massachusetts 02138

(Received in USA 19 April 1968; received in UK for publication 20 May 1968)


The prediction (1) that medium-sized <u>trans</u>-cyclic olefins should possess molecular dissymmetry was substantiated by Cope and coworkers (2), who resolved <u>trans</u>-cyclooctene <u>via</u> an optically active platinum(II) complex. However, attempts at the direct synthesis of optically active <u>trans</u>-cyclooctene have thus far met with little success (3, 4). We report here an efficient, direct synthesis of optically pure <u>trans</u>-cyclooctene which is based on the previously reported (5a) stereospecific conversion of the racemic thionocarbonate (2) to racemic <u>trans</u>-cyclooctene.

Optically active (+)-<u>trans</u>-1, 2-cyclooctanediol (1) has been obtained as follows (6). Treatment of a solution of racemic 1 in dry tetrahydrofuran with a slight molar excess of <u>n</u>-butyllithium followed by one equivalent of phthalic anhydride afforded, after recrystallization, the monophthalate half-ester 4, m. p. 167.5-168.5°, in 50-60% yield (7). The strychnine salt of 4 was prepared, then recrystallized by dissolving it in hot chloroform, adding petroleum ether to the cloud point, and cooling to -15°. A second recrystallization from trichloroethylene afforded the salt with rotation $[\alpha]_{578}^{21}$ -29.6° (c 1.826, 95% ethanol), not increased by three additional crystallizations (68% yield). Treatment of the strychnine salt of 4 with aqueous sodium carbonate followed by extraction of the alkaloid, acidification of the basic solution, and filtration and recrystallization of the solid gave (+)-4 in 81% yield, $[\alpha]_{578}^{23}$ +6.2° (c 2.55, 95% ethanol), and m. p. 140.0-140.5°. Saponification of (+)-4 with aqueous potassium hydroxide afforded (+)-1 in 73% yield after distillation (b. p. 88°/0.15 mm). The diol had $[\alpha]_{578}^{22}$ +17.6°, $[\alpha]_D^{22}$ +16.9° (c 1.33, absolute ethanol) (6). The infrared and n.m.r. spectra and refractive index (n_D²¹ 1.4990) of (+)-1 were identical to those of racemic 1.

Reaction of the optically active (+)-diol with N, N'-thiocarbonyldimidazole (5) gave the thionocarbonate (+)-2, m. p. 141.4-142.2°, $[\alpha] \frac{21}{D}$ +17.2° (c 2.27, chloroform), the infrared and n. m. r. spectra of which were identical to those of racemic 2. Treatment of (+)-2 with triisooctyl phosphite at 130° for 17 hr., using a rapid stream of nitrogen through the reaction mixture to remove the olefin as it was formed (5), afforded (-)-<u>trans</u>-cyclooctene in 84% yield and >99% isomeric purity (by v. p. c.). The (-)-3 so obtained had $[\alpha]_D^{21}$ -423° (c 0.650, methylene chloride), identical to the value obtained by Cope (2).


The stereospecific synthesis of <u>trans</u>-cyclooctene <u>via</u> the trithiocarbonate <u>5b</u> has also been reported (5a). In this route, <u>cis</u>-cyclooctene is converted stereospecifically to <u>trans</u>-1, 2-dithiocyanocyclooctane by

5a (+)-antipode, Y = NH 5b (-)-antipode, Y = S

reaction with thiocyanogen, and thence to the imino dithiocarbonate <u>5a</u> by refluxing with 48% hydrobromic acid. Treatment of the imino compound with hydrogen sulfide-ethanol affords <u>5b</u>. We have repeated this synthesis, with the added resolution of <u>5a</u>, <u>via</u> the salt with (-)-1-phenylethanesulfonic acid (8, 9), which could be brought to constant rotation $[\alpha]_{578}^{26}$ +180. 2° after 13 recrystallizations from 2-butanone. After regeneration of (+)-<u>5a</u>, $[\alpha]_{578}^{25}$ +173. 6° (c 1. 00, absolute ethanol), and conversion to (-)-<u>5b</u>, elimination to <u>trans</u>-cyclooctene was effected in 68% yield by treatment with 1, 3-dibenzyl-2-methyl-1, 3, 2-diazaphospholidine (10) in dry tetraglyme at 30°, removing the olefin under vacuum as it was formed. The (+)-<u>3</u> so generated was 99% isomerically pure and 96% optically pure. Thus, the formation of optically active <u>trans</u>cyclooctene <u>via</u> the trithiocarbonate is an alternative to the thionocarbonate route, although the latter is more amenable to a preparative scale synthesis because of the ease with which the precursor is resolved.

An interesting reaction of <u>trans</u>-cyclooctene, attributable to the reactivity of the strained <u>trans</u> double bond, is the 1,3-dipolar addition of diazomethane to give the 1-pyrazoline <u>6</u> (11). The photolytic decomposition of <u>6</u> to give <u>trans</u>-bicyclo[6.1.0]nonane (7) (11) suggests a synthesis of this bicyclic structure in

optically active form. Toward this end, (-)-3 was treated with an excess of diazomethane; removal of volatile materials and two short-path distillations afforded (-)-6 as a clear, colorless oil (7), n_D^{24} 1.4970,

No.33

 $[\alpha]_D^{25}$ -169.5° (c 1.15, carbon tetrachloride). Infrared absorption at 6.50 μ (N=N) and ultraviolet maximum (<u>n</u>-hexane) at 328 m μ (ϵ = 470) were in accord with the assignment of <u>6</u> as a 1-pyrazoline. The n.m.r. spectrum showed a broad band peaking at 1.64 δ (δ = ppm. downfield from tetramethylsilane), 12 H; a broad peak at 2.8 δ (1 H, H_D); a broad peak at 4.0 δ (1 H, H_C); and two groups of ABX quartets, split further into doublets, centered at 4.98 and 3.70 δ (1 H each, H_A and H_B). Coupling constants (in cps.): $J_{AB} = 17.0$; $J_{AC} = 2.4$; $J_{AD} = 9.0$; $J_{BC} = 3.2$; $J_{BD} = 9.5$.

Photolysis of an <u>n</u>-hexane solution of $(-)-\underline{6}$ in a Pyrex apparatus gave a good yield of $(+)-\underline{7}$, contaminated only with 4% (by v. p. c.) of its <u>cis</u>-fused isomer (12). The optically active <u>trans</u>-bicyclo[6.1.0]nonane, n_D^{21} 1.4653, had $[\alpha]_D^{24}$ +25.3° (c 1.10, carbon tetrachloride); its infrared spectrum had bands at 3.29, 3.35, and 9.81 μ (cyclopropane), while the n.m.r. showed two broad bands peaking at 0.20 (6 H) and 1.92 δ (10 H), with no vinyl protons. It seems probable that the optical purity of $(+)-\underline{7}$ corresponds to the olefin precursor and is, therefore, high.

Predoctoral fellowship support to J. I. S. from the National Science Foundation and the National Institutes of Health is gratefully acknowledged.

References

- A. T. Bloomquist, L. H. Liu, and J. C. Bohrer, <u>J. Am. Chem. Soc.</u>, <u>74</u>, 3643 (1952); V. Prelog in Sir A. Todd, Ed., "Perspectives in Organic Chemistry," Interscience Publishers, Inc., New York, N. Y., 1956, p. 129.
- A. C. Cope, C. R. Ganellin, H. W. Johnson, Jr., T. V. Van Auken, and H. J. S. Winkler, <u>J. Am</u>. <u>Chem. Soc.</u>, <u>85</u>, 3276 (1963).
- 3. A. C. Cope, W. R. Funke, and F. N. Jones, ibid., 88, 4693 (1966).
- 4. O. Červinka, J. Budilová, and M. Daněček, Collect. Czech. Chem. Commun., 32, 2381 (1967).
- (a) E. J. Corey, F. A. Carey, and R. A. E. Winter, <u>J. Am. Chem. Soc</u>., <u>87</u>, 934 (1965); (b) R. A. E. Winter, Ph. D. Thesis, Harvard University, Cambridge, Massachusetts, 1965.
- 6. This diol has been prepared from (-)-<u>trans</u>-cyclooctene by treatment with osmium tetroxide; A. C. Cope and A. S. Mehta, <u>J. Am. Chem. Soc.</u>, <u>86</u>, 5626 (1964). The diol thus obtained had [α]³¹₅₇₈+17.21° (c 3.34, absolute ethanol). However, <u>1</u> itself has never before been resolved. Cope and Mehta have also established the absolute configurations of the trans-diols and trans-olefins.
- 7. Satisfactory combustion analyses were obtained for these compounds.
- 8. B. Holmberg, Arkiv. Kemi, Mineral.Geol., 13A, No. 8 (1939).
- 9. E. B. Evans, E. E. Mabbott, and E. E. Turner, J. Chem. Soc., 1159 (1927).
- This reagent allows the stereospecific generation of olefins from trithio- and thionocarbonates under milder conditions than needed with trialkyl phosphites; see E. J. Corey, <u>Pure Appl. Chem.</u>, <u>14</u>, 19 (1967).

-

- 11. A. C. Cope and J. K. Hecht, <u>J. Am. Chem. Soc</u>., <u>85</u>, 1780 (1963).
- That the formation of cyclopropanes by photolysis of 1-pyrazolines is highly stereoselective but not necessarily stereospecific has been shown by C. G. Overberger, R. E. Zangaro, and J-P. Anselme, J. Org. Chem., <u>31</u>, 2046 (1966); see also T. V. Van Auken and K. L. Rinehart, Jr., <u>J. Am. Chem.</u> <u>Soc.</u>, <u>84</u>, 3736 (1962).